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ABSTRACT 
 
This work is motivated by possible medical applications of focused ultrasound in minimally invasive 
treatment of a variety of disorders. The mechanical and thermal effects caused by high-frequency 
ultrasound in different material systems are calculated using a finite element based program called PZflex.  
The pressure distributions generated by plane as well as focused ultrasound beams are presented.  For the 
focused beam, the temperature distribution in the focal zone is also calculated.  The results indicate that the 
heating efficiency of the ultrasound energy in the focal region depends on the exciting frequency and the 
geometry of the focal zone depends on the material being tested. At higher excitation energies, cavitation 
and nonlinear effects need to be included in the simulations.  These effects are under current investigation.    
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1. INTRODUCTION 
 

The interaction between ultrasound and biological matters has been investigated by a number of 
authors for almost half a century[1-8].  However, the widespread use of therapeutic ultrasound in clinical 
environments has so far been limited, in part, due to incomplete understanding of the interaction process.  
In order to treat a narrow target area with minimal damage to the surrounding tissue, it is necessary to 
predict the path of the ultrasound beam from the transducer to the target.  Since experimental studies using 
living tissue is difficult and costly, theoretical simulation of the problem can be extremely useful in 
providing a firm scientific basis for future clinical applications of focused ultrasound.  Furthermore, the 
complex geometry and acoustic properties of human tissue often preclude their treatment using analytical 
methods and numerical methods (e.g., finite element or FEM) are needed in order to obtain quantitative 
information on the interaction between ultrasound and biological materials. 

In this study, PZFlex[5], a commercially available finite element based software, is used to obtain 
numerical solution of a variety of models of the interaction problem.  PZFlex is widely used for designing 
transducers [6], calculating the mechanical effects of the ultrasound on tissues [7], modeling therapeutic 
ultrasound [8] and calculating thermal effects of high-frequency ultrasound [9]. For this reason, PZFlex has 
recently emerged as a very useful tool in analyzing the mechanical, thermal, biological and clinical aspects 
of therapeutic ultrasound. 

In this paper, the mechanical and thermal effects caused by high-frequency ultrasound in different 
material systems are calculated.  The pressure and temperature distributions generated by a focused 
ultrasound in the material systems are calculated and presented.  Finally, the direction of future research is 
discussed. 

 
2. PLANE WAVES  

 
In most applications of ultrasound, the objective is to treat a small area in the path of the ultrasonic 

beam. Thus, the theoretical simulations must be able to isolate the local effects associated with the 
interaction process from boundary and other effects. However, conventional Finite Element Methods 
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require the models to have finite dimensions with specified conditions at the boundary. In dealing with 
wave local interaction effects with small geometric and material features in extended media, many modern 
FEM packages use boundary conditions that approximately simulate the radiated energy out of the FEM 
model. Two such conditions, namely, symmetry (SYMM) and absorption (ABSR) are used in simulating 
propagation in unbounded media. In order to verify the accuracy of these approximations, the problem of 
plane waves propagating across a solid layer between two different fluid media is considered.  The 
analytical solution of this problem is compared with that obtained from PZflex in an effort to insure the 
accuracy of the FEM code for unbounded media. 
 
2.1 Problem description 

The three-layered materials system is shown in Fig. 1.  It is infinite in the vertical, y-direction and 
semi-infinite along the positive x direction.  The thickness of the water layer is h1 and that of the solid layer 
is h2. A uniformly distributed pressure, f(t), is applied at y = 0.   
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Fig. 1: A three-layered medium 
 

2.2.  Theoretical solution 
The pressure field within the medium can be calculated by using a standard theoretical approach.   We 

first solve the propagation problem in the frequency domain and invert the resulting spectral response to 
obtain the time domain result.  In the frequency domain, the displacement in water can be expressed in the 
form 
      W x , 0 < x < h( ) ( )1 1 1 1

1( , ) ik x h ik x hC e R eω − − −= + ⋅
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where the time dependence, eiωt, has been suppressed. In (1), k1 = ω/α, is the wave number, ω is the angular 
frequency, α1 is the velocity of the acoustic waves in water and R is the reflection coefficient. The 
displacements in the 2nd and 3rd layers are of the form 
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where h = h1 + h2,  are constants, T is the transmission coefficient, and k,, BA 1, k2 are the wavenumbers in 
the 2nd and 3rd layers, related to the wave velocities, α1, α2, through kj = ω/αj.  

The pressure is related to the displacement through the relation 
2( , ) ( 2 ) wP x w
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Applying the conditions for the pressure at x = 0 and the continuity conditions for the pressure and 
displacement at the interfaces, x = h , , the following system of equations is obtained for the unknown 
coefficients, C, R, A, B, and T: 
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and F(ω) is the Fourier time transform of the applies pressure, f(t). In the present calculations f(t) is 
assumed to be a single cycle sine pulse of period τ given by 
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Solving the system of equations, we obtain,  
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   and   
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The pressure, p(x, t), at a given point, x, can be calculated by inversion of P(x,ω) using FFT.  
The properties of the three materials used in the calculations are given in Table 1. The pressure at the 

point, x = 5 mm, marked by the symbol “⊕ ” is calculated for τ = 2 µs. The results are shown in Fig. 2.   
 

Table 1.   Material Properties used in Figs. 1 - 9. 
Material Density  

(g/cc) 
P-Wave Speed 

 (mm/ms) 
S-Wave Speed 

(mm/ms) 
Thickness  

(mm) 
Water 1000 1500 0 15 

Solid #1 [5]  2600 2800 1300 10 
Solid #2 [5] 1180 2470 1080 ∞ 
Aluminum 2700 6400 3200 ∞ 
BIOM [5] 3900 1881 1038 5 

 

 
 

Fig. 2: Analytical solution for the pressure in the three-layered model at x = 5.0 mm 



2.3 FEM analysis using PZflex 
The FEM calculations using PZflex are carried out in a model with finite dimensions: - 15 mm < y < 

15 mm, 0 < x < 35 mm. The SYMM boundary is used on both sides of this strip, y = ± 15 mm, and the 
ABSR boundary condition is used at x = 35 mm to simulate the infinite dimension along the x direction.   
The pressure history at x = 5 mm in the fluid is shown in Fig. 3. Comparing the results obtained by 
theoretical method and FEM, we can see that the theoretical solution and numerical solution are almost 
identical.  However, the small oscillation after the main pulse is caused by numerical noise generated by the 
FEM code.   

As an example of the additional capabilities of the PZflex software, the full-field pressure at two 
different times, calculated from PZflex, are shown in Fig. 4.   The interaction of the waves with the two 
interfaces can be easily identified. 

 

  
Fig. 3:  FEM solution for the pressure in the three-layered model at x = 5.0 mm 

 
                          

 
 

 
 

Fig. 4:  Pressure distribution in the medium at t = 13 µs and 16 µs.  
 

3. FOCUSED ULTRASOUND 
 

It is well known that a focused lens can steer the beam into a point at higher energy than a uniform 
beam [8]. The mechanical effect of ultrasound in a material by a uniform load and a phase-delayed source 
that simulates focused ultrasound is calculated and compared by using PZFlex FEM analysis.  In this 
section, the focused ultrasound is used and the mechanical effect is considered for three cases. 

 
3.1 Focused wave in a two-layered medium 

In the problem shown in Fig. 5, the pressure caused by a focused cylindrical lens is calculated. The 
materials used are water and aluminum; their mechanical properties are listed in Table 1. In Fig. 5, the part 
above the black line is water and the rest is aluminum.  The angle of the lens is 60o and its radius is 30 mm. 



The focal point of the lens is marked by the symbol “+” in the figure. The thickness of the water layer is 8 
mm and the dimension of the FEM model is 60 mm × 60 mm. All of the boundaries are ABSR boundaries.  
The applied pressure on the lens is the first half of the pulse given in equation (9). 

  The calculated wavefields are shown in Fig. 6. The “focal points” for the two cases: (a) water and 
aluminum, and (b) water only, are also shown. The input energy is the same but the pressure in the “focal 
point” is different for the two cases.  The focal pressure in water is higher than that in aluminum; this is 
expected to be true for most solids including bones and other biological materials. Phase delay and other 
similar techniques can be used to increase the pressure in the solid. 

 
 

 
 

Fig.5: The geometry of the model  
 
 

             
                           (a) In water-loaded aluminum                                                   (b) In water only 

 
Fig. 6: The wavefields and “focal points” 

 
      It should be mentioned that the PZflex calculations presented in Fig. 6 produce significant “negative 
pressure” fields originating from the edges of the lens.  Since the incident field in this case is a positive 
pressure pulse, the negative pressure field appears to be numerical noise associated with the FEM code. 
 
3.3 Wave interaction with a biomaterial 

In this section, we consider the interaction of the focused beam from the lens considered in the 
preceding section with a layer of a biomaterial (BIOM) with properties given in Table 1. These properties 
are close to those of human bone tissues. The simulation model is shown in Fig. 7(a), where the black arc is 
the lens, the middle layer is the bone, and the rest is water.  The distance between the edges of the lens and 
the top surface of the layer is 5 mm. The result, presented in Fig. 7(b), shows that after the ultrasound 
passes through the layer, it is refocused at a point below the layer, as can be predicted on the basis of ray 
theory. 

 



                            

       

 

             
 

              Fig. 7: (a) The geometry of the problem                                   Fig. 7: (b) The refocused point 
 

4. THE THERMAL FIELD 
 

The thermal effects play the most significant role in many applications of therapeutic ultrasound. In 
this section, the quantitative features of the mechanical and thermal effects produced in a biomaterial 
insonified by a focused ultrasonic field (Fig. 8), is examined in this section.  For simplicity, both materials 
are assumed to be semi-infinite. The biomaterial is assumed to be dissipative (viscoelastic) with loss factor, 
D, shown in Fig. 9 in units of db/m. The effects of dissipation on the acoustic wavefield can be 
incorporated in the calculations through the introduction of the non-dimensional specific attenuation factor, 
Q, related to D through the equation 

cD
fQ 3.27

≅  

where f is the frequency in MHz and c is the phase velocity in m/s. The attenuation factor, Q, for the 
biomaterial is shown in Fig. 10. It is interesting to note that Q is approximately the same for dilatational 
and shear waves.   

The temperature field produced in the material is governed by the modified heat equation, 

uQTk
t
T

+∇⋅∇=
∂
∂ )(  

where k is the thermal conductivity and Qu is the dissipated (or absorbed) acoustic energy.  Pzflex tracks 
the damping losses in the mechanical field and solves the discretized form of the heat equation using an 
implicit time integrator.  

The thermal properties of the materials used in the calculations are given in Table 2.  The lens is as the 
same as the one in last problem; its radius is 30 mm and the angle is 60 .  The dimensions of the finite 
element model are 60 mm × 60 mm. The incident ultrasound is a continuous pressure wave with frequency 
f, and amplitude 1MPa.  

o

 
 

Table 2.  Thermal properties of the materials used in the calculations 
 

Material Q 
@1MHz 

Specific Heat 
J/Kg·K 

Thermal Conductivity 
W/mK· 

BIOM [5] 25 4200 0.058 
Water ∞ 4200 0.058 

 
 



 
 

Fig. 8:  The model of thermal problem 
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          (b) Distribution of energy loss 

 loss (J) in the biomaterial (b). 



The temperature distributions caused by the focused ultrasound at three different frequencies, .5MHz, 
1MHz, and 1.5 MHz are shown in Figs. 12. It can be seen that the temperature distributions in the three 
cases are qualitatively similar, but the peak temperatures in the focal region are strongly frequency 
dependent.  This is shown in Fig. 13 where the calculated peak temperature produced in the focal region of 
the biomaterial is plotted as a function of the exciting frequency.  It can be seen that the peak temperature 
in the focal region first increases then drops rapidly with frequency. At higher frequencies, the increase in 
temperature appears to occur primarily near the interface. The temperature increase in the focal region is 
plotted as a function of time in Fig. 13b. It can be seen that the increase is almost linear in time.  

 
 

     
 

Fig.12: Temperature distributions in the biomaterial at 8 sec. 
0.5 MHz (left panel), 1 MHz (middle panel) and 1.5MHz (right panel) 
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 Fig. 13a: Peak temperature vs. frequency at 8 sec. Fig. 13b:  Peak temperature in the focal region 
as a function of time. 

 
 

 
5. CONCLUSIONS AND FUTURE RESEARCH 

 
Locating the focal region of therapeutic ultrasound in complex biological materials systems is an 

important issue that needs to be properly addressed before wider clinical applications are possible. Lack of 
adequate knowledge on the temperature distribution in the biomaterial can lead to thermal exposure to a 
larger area for longer period of time and use of higher intensity ultrasound than may be needed. The 
knowledge gathered not only can reduce the needed intensity of the input ultrasound, but also reduce 
possible damage to the surrounding tissues.  The characteristics of the interaction between focused 
ultrasound and a simple model of the biological material have been determined in this paper. Several 
interesting features of the interaction including the shape and size of the focal region and the frequency as 
well as the spatial distribution of the temperature field in the material have been presented.   Interaction 
with realistic models of biological materials systems and the effects of cavitation, bubble formation, 
nonlinear effects, etc. are under current investigation.  
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